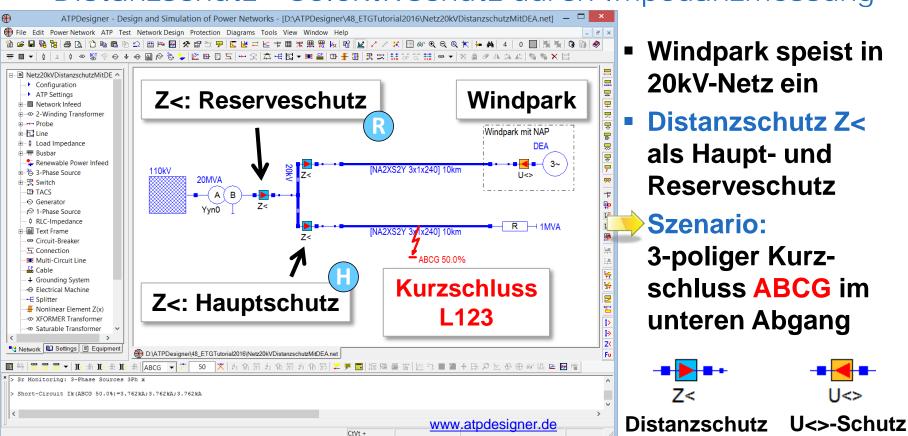
SCHUTZ- UND LEITTECHNIK 2016

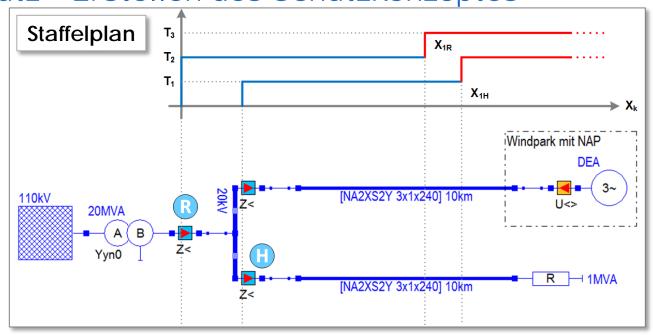
Korrekte Messung der KS-Reaktanz durch einen Distanzschutz bei Zwischeneinspeisung mit Netzstromrichtern

Block 3a - Spezielle Schutzthemen

Prof. Dr.-Ing. Michael Igel Institut für Elektrische Energiesysteme Hochschule für Technik und Wirtschaft des Saarlandes, Saarbrücken Leiter der Zertifizierungsstelle der kws GmbH, Saarbrücken

23. Februar 2016 v_{1.2}





Distanzschutz - Selektivschutz durch Impedanzmessung

Distanzschutz – Erstellen des Schutzkonzeptes

- Reserveschutz
- Hauptschutz

- Selektivschutz durch 2 Impedanzzonen je Distanzschutz Z
- Bemessung der Einstellwerte des Polygons ohne DEA
- Staffelfaktor: f_s = 85% für die polygonale Impedanzkennlinie

Distanzschutz - Auslegung des Zeitstaffelplans

■ (H) 2 Zonen Hauptschutz

$$X_1 = 0,85 \cdot X_{1L1}$$

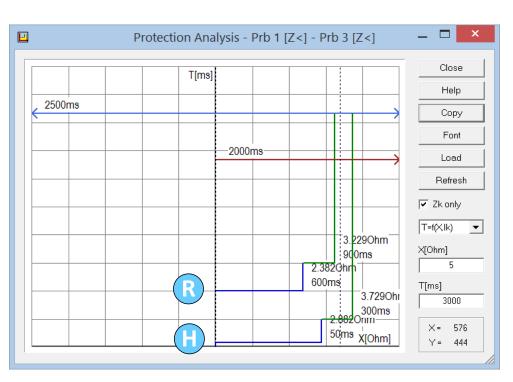
$$T_1 = 50ms$$

$$X_2 = 1, 2 \cdot X_{1L1}$$

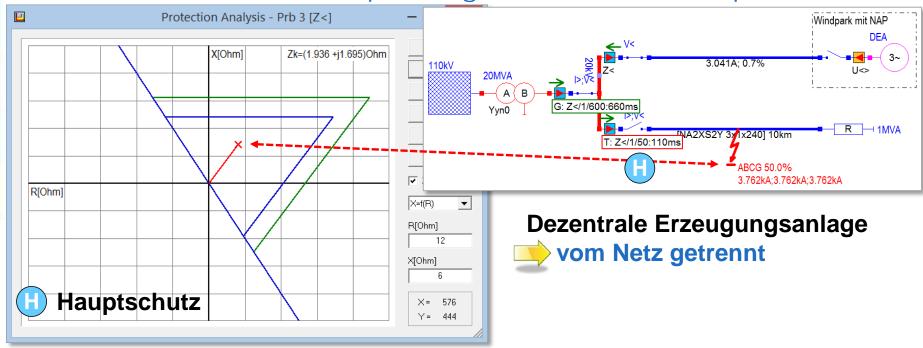
$$T_2 = 300ms$$

R 2 Zonen Reserveschutz

$$X_1 = 0.85 \cdot X_{1L1} - \Delta X \mid T_1 = 600 ms$$

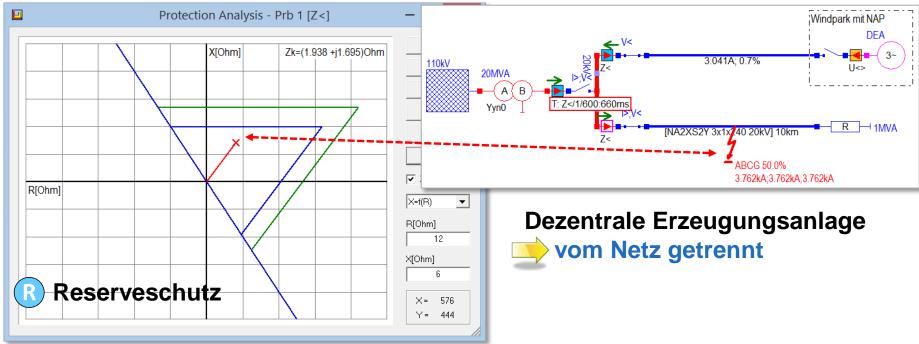

$$T_1 = 600ms$$

$$X_2 = 1, 2 \cdot X_{1L1} - \Delta X$$
 $T_2 = 900ms$


$$T_2 = 900 ms$$

Endzeitstufen

qerichtet = 2s, ungerichtet = 2,5s


Distanzschutz – Überprüfung des Schutzkonzeptes

- Polygonale Auslösekennlinien des Hauptschutzes Z
- Zeiger der gemessenen Kurzschlussimpedanz Z_k

Distanzschutz – Überprüfung des Schutzkonzeptes

- Polygonale Auslösekennlinien des Reserveschutzes Z
- Überprüfung der Selektivität bei Schutzversager des Hauptschutzes

Distanzschutz – Überprüfung des Schutzkonzeptes

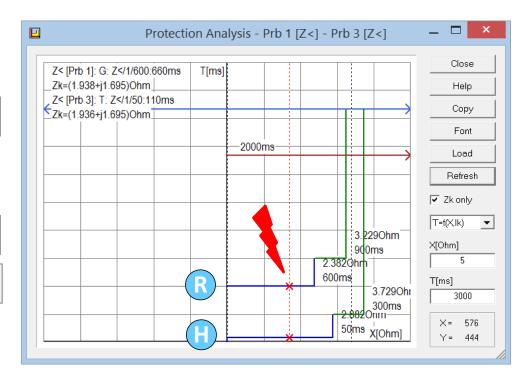
■ (H) 2 Zonen Hauptschutz

$$X_1 = 0.85 \cdot X_{1L1}$$

$$T_1 = 50ms$$

$$X_2 = 1, 2 \cdot X_{1L1}$$

$$T_2 = 300ms$$

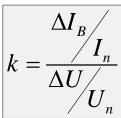

R 2 Zonen Reserveschutz

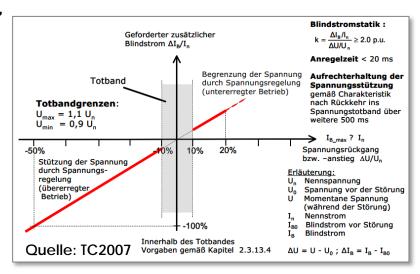
$$X_1 = 0.85 \cdot X_{1L1} - \Delta X \mid T_1 = 600 ms$$

$$T_1 = 600ms$$

$$|X_2 = 1, 2 \cdot X_{1L1} - \Delta X|$$
 $|T_2 = 900ms$

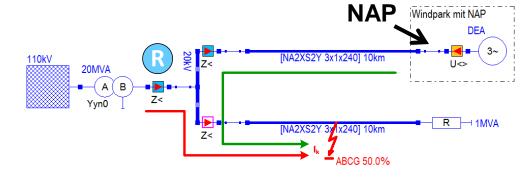
$$|T_2| = 900ms$$

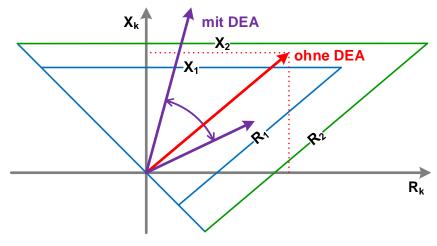




LVRT-Betrieb einer dezentralen Erzeugungsanlage

- Grundlage: Mittelspannungsrichtlinie (MSR2008)
- Erkennung eines Kurzschlusses durch U< Überwachung
- Wirkleistungseinspeisung: Keine Vorgaben
- Blindstromeinspeisung: Stützung der Netzspannung
 - Vorgaben in z.B. SDLWindV, TC2007
 - Festlegung Blindstromstatik k abhängig von der Kurzschlussspannung und dem **Blindstrom** vor

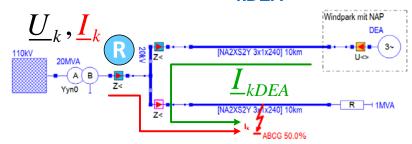

Kurzschlusseintritt



Zwischeneinspeisung – Verfälschung der Z_k - Messung

- Reserveschutz R in der Einspeisung kann den KS-Beitrag der DEA nicht einmessen.
- KS-Impedanz Z_k mit DEA wird falsch eingemessen
- Problem: KS-Klärung erfolgt NICHT entfernungsselektiv abhängig von Blindstromstatik k und Kurzschlussspannung am Netzanschlusspunkt (NAP).

Generator und Netzstromrichter – Analyse und Potenziale


KS-Verhalten	Synchrongenerator	DEA Netzstromrichter
Netzphysikalische Wirkung am Netzanschluss- punkt (NAP)	Spannungsquelle → KS-Strom I _k " wird durch X" begrenzt → I _k " = 215 · I _{rG}	Stromquelle → KS-Strom durch Netz- stromrichter begrenzt → I _k " = 11,4 · I _{rDEA}
$\underline{\mathbf{I}}_{k} = \mathbf{I}_{kW} + \mathbf{j} \cdot \mathbf{I}_{kB}$	Blind- und Wirkanteil durch Netzphysik bestimmt	Blind- und Wirkanteil durch Software bestimmt
Potenziale	Verhältnis I _{kB} /I _{kW} nicht einstellbar	Verhältnis I _{kB} /I _{kW} per Software einstellbar → Verschiebungsfaktor cosφ

Zwischeneinspeisung – netzphysikalische Analyse

- Reserveschutz: Messung von U_k, I_k am Messort, nicht von I_{kDEA}
- Berechnung der KS-Impedanz Z_k im Mitsystem
- Vergleich mit der Mitimpedanz Z₁ der Leitung

$$\underline{\underline{U}_{k}} = (\underline{\underline{I}_{k}} + \underline{\underline{I}_{kDEA}}) \cdot \underline{\underline{Z}_{1}} \qquad \underline{\underline{Z}_{k}} = \underline{\underline{U}_{k}} = \underline{\underline{Z}_{1}} + (\underline{\underline{I}_{kDEA}}) \cdot \underline{\underline{Z}_{1}}$$

■ Der Zwischeneinspeisestrom I_{kDEA} verfälscht die KS-Messung.

Analyse der Verfälschung $\Delta \underline{Z} = f(\underline{I}_{kDEA}, \underline{I}_{k}, \underline{Z}_{1})$

Gibt es eine Möglichkeit, die Verfälschung zu kompensieren ?

$$\underline{\underline{Z}_{k}} = \underline{\underline{U}_{k}} = (R_{1} + jX_{1}) + \underline{\underline{I}_{kDEA} \cdot \underline{Z}_{1}} \stackrel{!}{=} R_{k} + jX_{k}$$

■ KS-Reaktanz X_k wird verwendet, den KS-Ort einzumessen.

• Idee:
$$\operatorname{Im}\left(\frac{\underline{I}_{kDEA} \cdot \underline{Z}_{1}}{\underline{I}_{k}}\right) = \Delta X \stackrel{!}{=} 0$$

$$\underline{Z}_{k} = R_{1} + \Delta R + jX_{1}$$

$$\operatorname{Im}\left(\frac{I_{kDEA} \cdot Z_{1}}{I_{k}} \cdot e^{j(\varphi_{DEA} + \varphi_{Z1} - \varphi_{Ik})}\right) \stackrel{!}{=} 0$$
Lichtbogenreserve

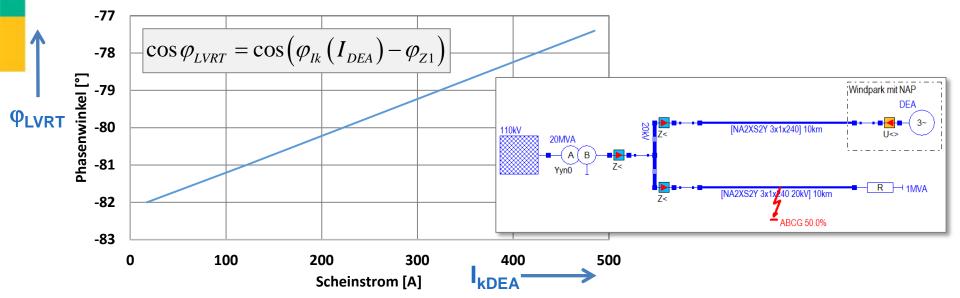
Analyse der Verfälschung $\Delta Z = f(\underline{I}_{kDFA}, \underline{I}_{k}, \underline{Z}_{1})$

"Lichtbogenreserve" für die dezentrale Erzeugungsanlage

$$\Delta X = 0 \quad wenn \quad \varphi_{DEA} + \varphi_{Z1} - \varphi_{Ik} = 0$$

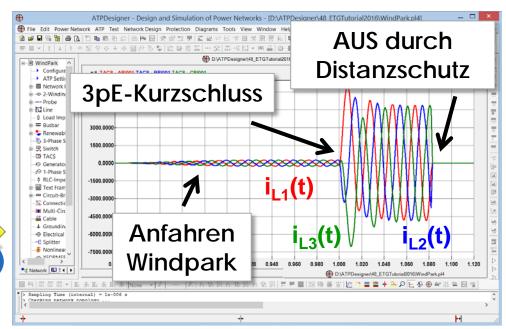
- Daraus folgt die Vorgabe für die dezentrale Erzeugungsanlage:
 - Im LVRT-Modus muss ein Kurzschlussstrom <u>I_{kDEA}</u> mit einem definierten Verschiebungsfaktor $\cos \varphi_{DEA}$ eingespeist werden.

$$\varphi_{DEA} = \varphi_{Ik} - \varphi_{Z1}$$

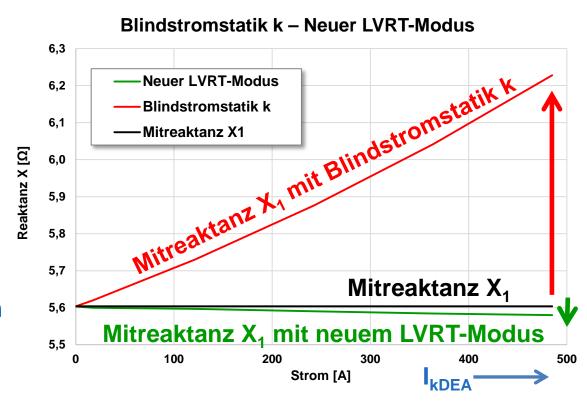


$$\varphi_{DEA} = \varphi_{Ik} - \varphi_{Z1} \qquad \Longrightarrow \qquad \cos \varphi_{DEA} = \cos (\varphi_{Ik} - \varphi_{Z1})$$

Der neue LVRT-Modus: KS-Beitrag <u>I_{kDEA}</u> hat einen netzabhängigen Verschiebungsfaktor.


 Die fluktuierende Stromeinspeisung der DEA verändert die Phasenwinkel der Netzspannungen und den Phasenwinkel φ_{lk} des KS-Stromes I_k am Messort des Distanzschutzes.

Verschiebungswinkel in Abhängigkeit des Stromes


Der Praxistest im Labor

- Implementierung in ein MSR2008-konformes Modell einer DEA im Netzberechnungsprogramm ATPDesigner (<u>www.atpdesigner.de</u>)
- Berechnung der dynamischen Netzvorgänge
- DEA-Modell mit neuem LVRT-Modus cosφ_{LVRT}
- Generisches Modell eines Distanzschutzes
- Kurzschlussströme am Netzanschlusspunkt (NAP)

Der Praxistest im Labor

- Referenzwert: Mitreaktanz X₁
- Verfälschung der gemessenen KS-Reaktanz X_k ist deutlich geringer
- Fehlerortselektivität ist erheblich verbessert.

Vorteile

- KS-Reaktanz X_k korrekt → Verbesserte Fehlerortselektivität
- KS-Resistanz R_k verfälscht → Behandlung wie Lichtbogenreserve
- Dezentrale Erzeugungsanlage (DEA):
 - Nur eine einfache lineare cosφ_{LVRT} Kennlinie in der DEA erforderlich
 - Kein Datenaustausch (Kommunikation) DEA Distanzschutz erforderlich

Nachteile

- Die cosφ_{LVRT} Kennlinie muss netzabhängig ermittelt werden.
- Der DEA-Scheinstrom I_{rDEA} kann i.a. Regel <u>nicht</u> zu 100% als Blindstrom eingespeist werden, da der Verschiebungsfaktor cosφ_{LVRT} eingehalten werden muss.

Zusammenfassung

Das Verhalten von dezentralen Erzeugungsanlagen mit Netzstromrichtern wird nicht nur durch Netzphysik sondern auch durch Software definiert.

Damit kann die DEA ein Netzschutz verträgliches Verhalten zeigen.

Der Beitrag zeigt ein Verfahren, wie DEA die Arbeitsweise des Netzschutzes unterstützen können und die Fehlerortselektivität bei Zwischeneinspeisung deutlich verbessert wird.

Ein "uraltes" Problem der Netzschutztechnik wird durch Netzstromrichter gelöst.

Der vorliegende Beitrag ist im Rahmen des Verbundvorhabens "ProFuDiŠ - Schutzsysteme für die Verteilungsnetze der Zukunft" entstanden.

für Wirtschaft

Gefördert durch:

